2020 UPDATE

TICK PARALYSIS
OF DOGS AND CATS

An Updated Guide to Diagnosis, Management, Treatment and Prevention

Developed by the Australian Paralysis Tick Advisory Panel, 2019

Proudly supported by Boehringer Ingelheim Animal Health, the makers of NEXGARD®, NEXGARD SPECTRA® and FRONTLINE®

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Australian Paralysis Tick Advisory Panel Members 2019</td>
<td>2</td>
</tr>
<tr>
<td>Diagnostic Approach</td>
<td>4</td>
</tr>
<tr>
<td>Treatment Protocols</td>
<td></td>
</tr>
<tr>
<td>Protocol A</td>
<td></td>
</tr>
<tr>
<td>– No Clinical Signs of Tick Paralysis with Evidence of a Tick or Tick Crater</td>
<td>6</td>
</tr>
<tr>
<td>Protocol B</td>
<td></td>
</tr>
<tr>
<td>– Clinical Signs of Tick Paralysis with or without Evidence of a Tick or Tick Crater</td>
<td>8</td>
</tr>
<tr>
<td>Management of the Complicated Patient</td>
<td>14</td>
</tr>
<tr>
<td>Feline Patients: The Differences</td>
<td>16</td>
</tr>
<tr>
<td>Tips for Transportation of Tick Paralysis Cases to Referral Centres</td>
<td>18</td>
</tr>
<tr>
<td>Tips for Brachycephalic Breeds</td>
<td>18</td>
</tr>
<tr>
<td>Managing Hypoventilation with Limited Veterinary Facilities</td>
<td>19</td>
</tr>
<tr>
<td>Intensive Care of the Anaesthetised and Intubated Patient</td>
<td>19</td>
</tr>
<tr>
<td>Critical Care:</td>
<td></td>
</tr>
<tr>
<td>Fluid Therapy</td>
<td>20</td>
</tr>
<tr>
<td>Oxygen Supplementation</td>
<td>23</td>
</tr>
<tr>
<td>Sedation and Anaesthesia</td>
<td>24</td>
</tr>
</tbody>
</table>

ABBREVIATIONS

ACP – Acepromazine; BW – Body Weight; CRI – Continuous Rate Infusion; CRT – Capillary Refill Time; ET – Endotracheal; ETCO2 – End-Tidal Carbon Dioxide; FiO2 – Fraction of Inspired Oxygen; GA – General Anaesthesia; IM – Intramuscular; IV – Intravenous; IVDD – Intervertebral Disc Disease; LMN – Lower Motor Neuron; MSTS – Minimum Standards for Tick Search; NaCl – Sodium Chloride; NMJ – Neuromuscular Junction; PaO2 – Arterial Partial Pressure of Oxygen; PCO2 – Partial Pressure of Carbon Dioxide (venous or arterial); SC – Subcutaneous; SpO2 – Peripheral Capillary Oxygen Saturation; TAS – Tick Antitoxin Serum; THC – Tetrahydrocannabinols; VAS – Visual Analogue Scale.
INTRODUCTION

It is anticipated that these guidelines will:

1. Provide a foundation for consistent management of tick paralysis of dogs and cats
2. Deliver better outcomes for patients and their owners
3. Assist veterinarians who are unfamiliar with treating tick paralysis
4. Establish ‘best practice’ when managing tick paralysis
5. Upgrade practice standards where applicable and appropriate
AUSTRALIAN PARALYSIS TICK ADVISORY PANEL MEMBERS 2019

PROF RICK ATWELL
Rick graduated with first class honours in 1973, worked in general practice and then accepted a lectureship at the school of Veterinary Science, University of Queensland. He proceeded to do a PhD in pulmonary hypertension, using canine heartworm disease as the model. He has been the Director of the University of Queensland Clinic and Hospital, and has had various roles within the Veterinary School, including Professorship and Head of the Medicine Department. His clinical specialty training was a Fellowship in Thoracic Medicine with the Australian College of Veterinary Scientists. Most of his clinical research work has been in dirofilariosis and holocyclotoxicosis and he has published over 200 papers and received several veterinary awards.

PROF STEPHEN BARKER
Stephen is a Professor of Parasitology in the Department of Parasitology, Faculty of Science, University of Queensland. Stephen has been studying ticks and other ectoparasites at the University of Queensland for 25 years. Recent activities include: (i) a monograph with Dr Allan Walker (University of Edinburgh) on the “Ticks of Australia. The species that infest domestic animals and humans” (2014, Zootaxa, 3876, 144 pp.), (ii) research on the paralysis ticks of Australia, Ixodes holocyclus (eastern paralysis tick) and Ixodes cornuatus (southern paralysis tick), and (iii) research on the evolution of the Boophilus ticks and the other hard ticks. Supported by Boehringer Ingelheim, Stephen offers a free tick-identification service to veterinarians in Australia.

MRS DAYANA BARKER
Dayana graduated from the Federal University of Mato Grosso do Sul (Brazil) in Biological Science. She is a parasitologist and is currently undertaking a PhD in Veterinary Parasitology at the University of Queensland, with experience in tick-taxonomy in Australasia. Alongside her husband and supported by Boehringer Ingelheim, Dayana has been identifying ticks for veterinary clinics in Australia since 2014. Her work has been published in national and international journals. Dayana recently discovered a new species of tick in Australia, Ixodes barkeri, named after her husband, Professor Stephen Barker.

DR JUSTIN DANIEL
Justin graduated from Murdoch University in 1998. He worked in mixed animal practice in South Australia from 1999-2004, interrupted by a stint in the United Kingdom doing locum work in 2002. Justin moved to the New South Wales South Coast in 2005 to continue in rural mixed practice in a place where the ocean, national parks, snowy mountains and a hobby farm provide health and work/life balance. Justin and his wife Lindy became the owners of Eden, Pambula and Merimbula Vet Clinics. These clinics see a significant number of animals (large and small) with tick paralysis each year.

DR CHRISTOPHER HOLLAND
Christopher graduated with honours from the University of Sydney (1982) with BVSc, BSc(Well). After four years in small animal practice he undertook a PhD in neurophysiology at the University of Sydney (1991) and continued postdoctoral research in this field at the universities of Cambridge (United Kingdom) and Newcastle (New South Wales). He has an interest in small animal neurology, particularly disorders of movement, cranial nerves and the autonomic nervous system, and has published a number of peer-reviewed papers in this field.

DR ROB WEBSTER
Rob is a registered veterinary specialist in Emergency Medicine and Critical Care and a Director of the Animal Emergency Service. The practice has four hospitals in tick areas of South East Queensland, and treats over 2,000 cases of tick paralysis annually. He developed an interest in managing severe tick paralysis early on in his career due to the high numbers of patients that tended to die despite ‘appropriate’ treatment. Rob has done clinical research into patients with tick paralysis and has several publications on the subject.

DR ROB WEBSTER
Ellie started working as an Intensive Care Unit (ICU) veterinarian at Veterinary Specialist Services and Animal Emergency Service in 2012, where she has since treated and mechanically ventilated many cases with severe tick paralysis. Ellie’s special interests lie in managing tick and snake envenomation and she pursued several lines of research on these topics whilst she completed her Veterinary Emergency and Critical Care residency program between 2015 and 2017. In 2019, Ellie became a Fellow of the Australian and New Zealand College of Veterinary Scientists. She has produced numerous publications, including the largest ever feline tick paralysis case series to date in the Journal of Feline Medicine and Surgery. More recently, Ellie became Director of The Pet ICU in Brisbane – one of the foremost veterinary critical care centres in the country.

MRS DAYANA BARKER
Dayana graduated from the Federal University of Mato Grosso do Sul (Brazil) in Biological Science. She is a parasitologist and is currently undertaking a PhD in Veterinary Parasitology at the University of Queensland, with experience in tick-taxonomy in Australasia. Alongside her husband and supported by Boehringer Ingelheim, Dayana has been identifying ticks for veterinary clinics in Australia since 2014. Her work has been published in national and international journals. Dayana recently discovered a new species of tick in Australia, Ixodes barkeri, named after her husband, Professor Stephen Barker.

DR ELLIE LEISTER
Ellie is a veterinary medicine graduate and has been a veterinarian at Veterinary Specialist Services and Animal Emergency Service. She is a Fellow of the Australian and New Zealand College of Veterinary Scientists. Ellie has published multiple papers on tick paralysis, envenomation and venom research with the University of Melbourne. She is an Honorary Research Fellow in the Australian Venom Research Unit, Department of Pharmacology & Therapeutics, University of Melbourne and has published multiple papers on venom and antivenom topics in animals. Recently she started a biotech company producing and researching antivenom products for animals.

DR ANDREW PADULA
Andrew is a veterinary medicine graduate. After four years in mixed veterinary medicine practice he returned to complete a PhD, then worked in the UK as lecturer in farm animal sciences at the University of Bristol, returning in 2005 to do projects for the Australian dairy industry. Andrew then moved back to Gippsland where he owned and ran a mixed veterinary practice for 10 years whilst undertaking venom and antivenom research with the University of Melbourne. He is an Honorary Research Fellow in the Australian Venom Research Unit, Department of Pharmacology & Therapeutics, University of Melbourne and has published multiple papers on venom and antivenom topics in animals. Recently he started a biotech company producing and researching antivenom products for animals.

DR HEATHER RUSSELL
Heather graduated with honours from the University of Sydney in 2002. She spent the first part of her career in the United Kingdom in small animal general practice where she completed a General Practitioner Certificate in Small Animal Medicine through the European School of Postgraduate Veterinary Studies. In 2011, she began working for Northside Emergency Vet Service (NEVS), and became Clinical Manager in mid-2015. NEVS is located on Sydney’s Northern Beaches and treats over 1,000 tick paralysis patients per year. On average, this practice mechanically ventilates over 40 patients per tick season.

DR ELLIE LEISTER
Ellie started working as an Intensive Care Unit (ICU) veterinarian at Veterinary Specialist Services and Animal Emergency Service in 2012, where she has since treated and mechanically ventilated many cases with severe tick paralysis. Ellie’s special interests lie in managing tick and snake envenomation and she pursued several lines of research on these topics whilst she completed her Veterinary Emergency and Critical Care residency program between 2015 and 2017. In 2019, Ellie became a Fellow of the Australian and New Zealand College of Veterinary Scientists. She has produced numerous publications, including the largest ever feline tick paralysis case series to date in the Journal of Feline Medicine and Surgery. More recently, Ellie became Director of The Pet ICU in Brisbane – one of the foremost veterinary critical care centres in the country.

DR ANDREW PADULA
Andrew is a veterinary medicine graduate. After four years in mixed veterinary medicine practice he returned to complete a PhD, then worked in the UK as lecturer in farm animal sciences at the University of Bristol, returning in 2005 to do projects for the Australian dairy industry. Andrew then moved back to Gippsland where he owned and ran a mixed veterinary practice for 10 years whilst undertaking venom and antivenom research with the University of Melbourne. He is an Honorary Research Fellow in the Australian Venom Research Unit, Department of Pharmacology & Therapeutics, University of Melbourne and has published multiple papers on venom and antivenom topics in animals. Recently he started a biotech company producing and researching antivenom products for animals.

DR HEATHER RUSSELL
Heather graduated with honours from the University of Sydney in 2002. She spent the first part of her career in the United Kingdom in small animal general practice where she completed a General Practitioner Certificate in Small Animal Medicine through the European School of Postgraduate Veterinary Studies. In 2011, she began working for Northside Emergency Vet Service (NEVS), and became Clinical Manager in mid-2015. NEVS is located on Sydney’s Northern Beaches and treats over 1,000 tick paralysis patients per year. On average, this practice mechanically ventilates over 40 patients per tick season.

DR ROB WEBSTER
Rob is a registered veterinary specialist in Emergency Medicine and Critical Care and a Director of the Animal Emergency Service. The practice has four hospitals in tick areas of South East Queensland, and treats over 2,000 cases of tick paralysis annually. He developed an interest in managing severe tick paralysis early on in his career due to the high numbers of patients that tended to die despite ‘appropriate’ treatment. Rob has done clinical research into patients with tick paralysis and has several publications on the subject.
DIAGNOSTIC APPROACH TO SUSPECTED TICK PARALYSIS CASES

1. Initial Approach
 - Is the Animal Showing Any Clinical Signs?
 - If NO, seek veterinary attention urgently.
 - If YES:
 - What is the Probability of Tick Paralysis?
 - If NO and clinical signs are evident:
 - Other causes ruled out:
 - Diagnose:
 - Neurological examination
 - Respiratory examination
 - Full body clip to enhance retrieval of the entire tick burden
 - Use the finger walking method
 - Be systematic with the search pattern:
 - Search for ticks and tick craters
 - Look for asymmetric focal neurological deficits
 - Perform corneal fluorescein staining

2. Phone Advice to Client
 - Reported by Owner
 - Presented to Clinic

3.Tick Paralysis Treatment and Monitoring Required
 - NMJ and Respiratory Staging
 - Rule Out Other LMN Differential Diagnoses

4. DIAGNOSTIC APPROACH
 - Has a Paralysis Tick and/or Crater Been Found?
 - Initial Approach
 - Search for ticks and tick craters
 - Look for asymmetric focal neurological deficits
 - Conduct corneal fluorescein staining

5. PREVENTION
 - The Australian Paralysis Tick Advisory Panel recommends the year-round use of isoxazoline-based acaricides for all dogs and cats that are living in, or travelling to known tick regions.
 - The Australian Paralysis Tick Advisory Panel recommends the year-round use of acaricides for all dogs and cats that are living in, or travelling to known tick regions.

6. MINIMUM STANDARDS FOR TICK SEARCH (MSTS)
 - Identify the ticks
 - If ticks are found, remove immediately
 - Use a tick removal device, tweezers or fingers in a twist and pluck action
 - Advise owner to retain ticks for identification in clinic if required

7. Clinical Signs
 - Change of ear position
 - Dyspnoea
 - Hypoventilation
 - Reduced palpebral reflex
 - Facial weakness
 - Dysphagia
 - Myasthenia gravis
 - Metabolic disorders
 - Botulism
 - Chronic organophosphate toxicity
 - Recreational drug toxicity
 - Prescription drug toxicity

8. LMN Differential Diagnosis
 - Diffuse myopathy/polymyopathy
 - Polyneuropathy
 - Chronic organophosphate toxicity
 - Acute polyradiculoneuritis
 - Botulism
 - Neurological examination
 - Respiratory examination
 - Full body clip to enhance retrieval of the entire tick burden
 - Use the finger walking method
 - Be systematic with the search pattern:
 - Search for ticks and tick craters
 - Look for asymmetric focal neurological deficits
 - Perform corneal fluorescein staining

9. NMJ and Respiratory Staging
 - Identify the ticks
 - If ticks are found, remove immediately
 - Use a tick removal device, tweezers or fingers in a twist and pluck action
 - Advise owner to retain ticks for identification in clinic if required

10. RESPIRATORY VAS SCORE
 - Respiratory Vas Score
 - Respiratory Vas Score
 - Respiratory Vas Score
 - Note: hypoventilation in dogs may present with a normal to low respiratory rate.
TREATMENT PROTOCOLS

PROTOCOL A: NO CLINICAL SIGNS OF TICK PARALYSIS WITH EVIDENCE OF A TICK OR TICK CRATER

To be used in conjunction with Diagnostic Approach.

Treatment Considerations – A Risk-Benefit Approach

- Potential welfare, ethical and legal considerations include:
 - History and signalment
 - Likelihood of disease progression
 - Access to veterinary attention
 - Adverse systemic reactions to TAS
- Clinical signs usually appear:
 - After 72 hours of attachment
 - With a tick size of 4 mm wide on the 4th day of attachment

Please note: There have been rare anecdotal reports of ticks of <4 mm causing clinical signs of tick paralysis, but equally of large ticks not causing disease.

Treatment Options

- Hospitalise for 24 hours for observation and tick search as per MSTS, or
- TAS treatment if:
 - High risk patient due to co-morbidity or age
 - Owner request
- It is not feasible to admit the pet for monitoring or for the owner to return if clinical signs develop:
 - Ongoing monitoring at home, with instructions to contact the veterinary clinic immediately if clinical signs develop

If a cat does not present with clinical signs it is recommended to remove the tick and monitor closely for progression of clinical signs. Administration of TAS to cats who have previously been sensitised to TAS has an increased risk of anaphylaxis.

Prevention Treatment

- Administer acaricide to patient immediately if indicated
- Discuss ongoing prophylaxis for patient and all other at risk pets

Considerations for prophylaxis selection:

- Acaricidal label claims and speed of kill for Ixodes holocyclus vary with active ingredients
- Follow label instructions
- Likelihood of owner compliance

General Advice

- Advise importance of routine daily tick searches (as per MSTS), particularly if in a known tick area and during higher risk periods
- If ticks are found on people, seek medical advice

Owner Vigilance

- Convey that signs of tick paralysis could still develop despite tick removal
- Ongoing monitoring for clinical signs is necessary
- Keep quiet, minimise stress and excitement and consider confinement in a temperature controlled environment
- Perform tick searches (as per MSTS) every 6-12 hours for at least the following 72 hours
- Under veterinary direction, withhold food and/or water for 12-24 hours

[Image -138x13 to 596x373]
[Image 1391x21 to 1753x361]
PROTOCOL B: CLINICAL SIGNS OF TICK PARALYSIS WITH OR WITHOUT EVIDENCE OF A TICK OR TICK CRATER

To be used in conjunction with Diagnostic Approach and Management of the Complicated Patient

Ensure the prognosis, cost and expectations are clearly communicated to, and understood by, the owner.

Clinical signs linked with a guarded prognosis in dogs
- Presence of inspiratory dyspnoea and/or crackles
- Progression to expiratory dyspnoea and an audible expiratory wheeze within 24 hours of hospital admission
- Retching and/or vomiting

With all cases of tick paralysis, despite appropriate treatment, the outcome can still be unpredictable.

TREATMENT

- Tick Antitoxin Serum (TAS) – administer as soon as possible
 - It is advised to follow the label recommendations of the relevant TAS product in use
 - The dose rate of TAS remains controversial and panel members vary in their preference for dose rates

Factors to Consider

- In deciding a dose rate, consider the extent of unbound, circulating toxin available for TAS neutralisation, versus tissue-bound toxin which is therapeutically unavailable. This may be determined by the size, stage and number of ticks together with the severity of clinical signs of tick paralysis based on VAS and NMJ scores.
- A 2013 study in Sydney, NSW, showed none of the systems for calculating a dose rate of TAS (mL/kg, mL/tick, mL/animal) had any significant effect on the period from presentation to discharge, in either dogs or cats. In this study, doses ranged from 0.30-3.18 mL/kg for dogs and 0.45-1.79 mL/kg for cats with a median dose of 1 mL/kg for both dogs and cats.
- A 2001 study in dogs showed that increasing the dose above 0.1 mL/kg (range 0.1-8 mL/kg) did not alter mortality rate or time to recovery.

- IV administration is recommended
 - Administer over >20 minutes
 - Can be diluted in 0.9% NaCl
 - Adverse reaction rate very low with slow infusion
 - Anecdotally it has been reported that cats have a higher risk of acute severe reactions, especially on repeat administration. Consider administration of TAS very slowly (>1 hour) in these cases
 - Monitor mental alertness, mucous membranes, capillary refill time, respiratory rate, heart rate, pulse quality and blood pressure. If monitoring induces stress, consider visual assessment only
 - If IV administration is not possible, for example in critically stressed cats and small dogs, consider intra-peritoneal administration

Table 1: Adrenaline Dosage Cheat Sheet

<table>
<thead>
<tr>
<th>Patient Weight (kg)</th>
<th>Bolus Dose IV (mL) 1 mg/mL (1:1,000) solution*</th>
<th>Bolus Dose IV (mL) 0.1 mg/mL (1:10,000) solution**</th>
<th>CRI Dose IV (mL/h) 0.001 mg/mL solution***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*dose rate 0.01 mg/kg</td>
<td>*add 1 mL of 1 mg/mL adrenaline to 1 mL of crystalloid fluid *dose rate 0.01 mg/kg</td>
<td>*add 1 mL of 1 mg/mL adrenaline to 1000 mL of crystalloid fluid, mix well +dose rate 3 mL/kg/h</td>
</tr>
<tr>
<td>2.5</td>
<td>0.025</td>
<td>0.25</td>
<td>7.5</td>
</tr>
<tr>
<td>5</td>
<td>0.05</td>
<td>0.5</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>0.1</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>20</td>
<td>0.2</td>
<td>2</td>
<td>60</td>
</tr>
<tr>
<td>40</td>
<td>0.4</td>
<td>4</td>
<td>120</td>
</tr>
<tr>
<td>60</td>
<td>0.6</td>
<td>4</td>
<td>180</td>
</tr>
</tbody>
</table>

Not currently there is no evidence to support the use of premedication including atropine, adrenaline or corticosteroids to prevent adverse systemic reactions to TAS, and there is no evidence to support the use of acepromazine or atropine to reduce time to recovery.

Adverse Systemic Reactions to TAS

- Tachycardia, injected mucous membranes, anxiety, piloerection, swelling of the lips, cutaneous wheals, erythema, vomiting, diarrhoea, coughing and dyspnoea (anaphylactic/anaphylactoid reaction)
- Bradycardia, pale mucous membranes, hypotension, weakness, depression and reduced heart sounds

Treatment

- Discontinue TAS infusion and abort administration
- Administer adrenaline at 0.01 mg/kg IV every 5 to 15 minutes (see Table 1 below)
- If shock has already developed, give adrenaline CRI at 0.05 µg/kg/min (see Table 1 below)
- Supportive care including IV fluids and oxygen therapy
- There is no evidence to suggest that ancillary treatments (H1 and H2 antihistamines, corticosteroids, bronchodilators) are of benefit and should not be used as a substitute for adrenaline
- If the dog has recovered from the reaction, TAS can be restarted at a slower rate. N.B. TAS should NOT be restarted in feline patients

- Discontinue TAS infusion
- Administer atropine increments at 0.01-0.04 mg/kg (total doses as high as 0.1-0.2 mg/kg may be necessary)
- Supportive care including rapid IV fluids for volume expansion and oxygen therapy
- Reassess cardiopulmonary parameters
- If improved, restart TAS infusion at a slower rate

*Please see page 26 for a peer-suggested guide on dose regimens of TAS. Reported methods used for dose rate calculation include: a standard dose rate in millilitres per kilogram; a standard volume per tick; or a standard volume per animal based on the assumption that only one tick, which inoculates a standard amount of toxin, is likely to be present.
Stress reduction
- Sedation to be used on a case-by-case basis
 - Acepromazine at 0.01-0.05 mg/kg IV, IM or SC and/or butorphanol at 0.1-0.5 mg/kg IV, IM or SC; or
 - Butorphanol CRI at 0.05-0.3 mg/kg/h (titrate to effect)
- Over-sedation may impact clinical judgement and increase risk of aspiration
- Environmental
 - Quiet area with dimmed lighting
 - Consider pheromone diffusers (Adaptil® or Feliway®)
- Full body clip
 - As per the MSTS
 - Ensure adequate sedation or GA to reduce stress-induced respiratory compromise
- Administer an acaricide registered to treat and control Ixodes holocyclus
- Use clinical judgement in deciding whether parenteral anti-emetics and antacids are indicated for increased patient comfort
- There is currently no evidence available that these medications affect outcome
- Assess and treat for aspiration pneumonia if indicated

In any severely affected dog, consider aspiration pneumonia very likely. Early, aggressive treatment in these cases is critical.

Aspiration Pneumonia

If aspiration pneumonia is suspected, ideally confirm diagnostically by:
- Thoracic radiography
- Haematology (complete blood count and differential)
- If the patient is anaesthetised and intubated, broncho-alveolar lavage should be considered to obtain samples for culture and sensitivity

Other considerations where aspiration pneumonia is suspected:
- If diagnostic procedures are not possible due to stress-induced respiratory compromise and/or while awaiting culture results; broad-spectrum antibiotics (penicillins IV, cephalosporins IV, or trimethoprim-sulfonamide IV or SC) should be initiated, and escalated only if indicated by culture and sensitivity results
- For animals going home on antibiotics, recheck 5-7 days later. If the animal is still showing respiratory signs, consider a transtracheal/endotracheal wash or broncho-alveolar lavage (BAL)
- Take into consideration the contraindications for each of these antibiotics as well as protocols for antimicrobial stewardship
- Oxygen supplementation
- Nebulisation
- IV fluid therapy to ensure adequate hydration – as per the recommendations in the Critical Care section of this document on pages 20-22

DIAGNOSTICS
Perform a risk-benefit assessment for each test and consider the potential relative oxygen cost to the patient if stress is induced

Any intervention that raises stress levels will increase oxygen demands. In tick paralysis patients, diagnostic intervention should be carefully considered and avoided if the outcome of the test is unlikely to result in a modification to the treatment plan.

- Pulse oximetry
- Blood gas analysis (if available)
- Packed cell volume, total protein and electrolytes
- Thoracic radiographs, if respiratory compromise present
- Corneal fluorescein staining
- Full body clip (as per MSTS)

SUPPORTIVE CARE
Requirements should be tailored on an individual basis

- As a minimum requirement, place an IV catheter aseptically (and maintain patency)
- IV fluid therapy
 Turn to the Critical Care section on page 20 for more information on fluid requirements, types and rates
- Oxygen supplementation
 - Methods include:
 - Nasal oxygen
 - Trans-/intra-tracheal
 - Oxygen chamber/cage
 - Flow-by/face mask
 Turn to page 23 in the Critical Care section of this document for a summary of the indications, advantages, disadvantages, and practical tips for each technique
- Essential in all cases with dyspnoea
- Humidification is helpful
Respiratory Concerns

1. Upper airway obstruction: laryngeal dysfunction, mucus plug
2. Pulmonary parenchymal disease: aspiration pneumonia, pulmonary oedema
3. Unsustainable respiratory effort
4. Hypoxaemia
5. Hypoventilation

Routine Monitoring

With consideration not to cause undue stress\(^3\)
- Respiratory rate, effort and pattern every 4-6 hours
- Respiratory function (SpO₂ and/or blood gases if available) every 4-6 hours

When monitoring respiratory parameters, these timelines should be only be used as a guide. More frequent checks should be carried out if required.

- Check body temperature every 4-6 hours to ensure adequately maintained
- Check heart rate and rhythm every 4-6 hours
- Neurological examination every 12-24 hours to ascertain case progression, with restaging as necessary
 - Consider serial videos for objective comparison
- Tick search regularly\(^3\) as per MSTS
- Electrolytes (and/or packed cell volume) every 24 hours or more frequently as indicated
- Biochemistry if indicated
- Measure bodyweight every 24 hours
 - Consider measuring fluid inputs and outputs

Ocular Care
- Lubrication:
 - Cellulose-containing drops\(^1\) (e.g. Viscotears®, Lacri-lube® or Celluvisc\(^®\)) hourly
 - Lubricating eye ointment containing paraffin (e.g. VitA-POS\(^®\), Duratears\(^®\)), preferably every 2 hours
- Corneal examination +/- fluorescein staining at least once daily\(^6\)
 - Add appropriate antibiotic topically if indicated
 - Consider a partial temporary tarsorrhaphy or bandage contact lenses if complete lack of the palpebral reflex
- Soft bedding
 - Place in sternal recumbency\(^7\) with head up and re-position slightly every 4-6 hours

Apply physiotherapy principles for recumbent patients

Express the bladder every 4-6 hours if indicated\(^6\)
- Consider placing a urinary Foley catheter with a closed collection system

Nil per os
- A significant number of dogs with tick paralysis are found to have evidence of megaesophagus\(^21,22\)

Airway care
- Ensure patency
- Suction pharyngeal secretions as needed on a case-by-case basis (avoid causing undue stress)\(^3\)
- Clear oesophagus by suctioning (achieved by passing a long soft, nasal feeding tube)\(^3\)

IV catheter care at least once daily to monitor for any signs of phlebitis and iatrogenic infection\(^4\)
- Ensure environment is temperature controlled

IV catheter care at least once daily to monitor for any signs of phlebitis and iatrogenic infection\(^4\)
- Ensure environment is temperature controlled
Interpret with Other Parameters and Monitor Closely
Thoracic Radiographs
Assess for lower airway, pulmonary and cardiac changes and megaoesophagus ³,12,21,22

Aspiration Pneumonia
Refer to Treatment – Protocol B

Is the Work of Breathing Unsustainable?
When the oxygen cost associated with the animal’s increased breathing effort is greater than the ventilation and oxygenation benefits obtained. This may present as:
• Asynchronous abdominal movements ¹² ⁴
• Head and neck extension ¹² ⁴
• Open mouth breathing ¹² ⁴
• Apnoea ¹² ⁴
• Focused, anxious, or non-responsive, glazed eyes ³,14
• Respiratory VAS Score D ³,10,11,13,14,23 ³,10,11,14,23 (d,c)

Blood Gases
Hypoxia
Oxygen Supplementation ³,12

If SpO₂ < 90% or PaO₂ < 60 mmHg or ETCO₂ > 50 mmHg
If SpO₂ > 90% or PaO₂ < 60 mmHg or PCO₂ > 60 mmHg

Is work of breathing sustainable?
NO
YES

Requires Mechanical Ventilation
If SpO₂ < 90% or PaO₂ < 60 mmHg or PCO₂ > 60 mmHg
If SpO₂ > 90% or PaO₂ < 60 mmHg or ETCO₂ > 50 mmHg

Patient Airway Secured
Maintain GA, Monitor and Reassess Ongoing Need for Oxygen Supplementation
Consider Temporary Tracheostomy

Guarded Prognostic Indicators
• Vomiting or Regurgitation ³,12 ³,12 (d,c)
• Dyspnoea ³,12 ³,12 (d)
• Hypoxaemia ³,12 ³,12 (d)
• Hypercapnoea ³,12 ³,12 (d)
• High Respiratory VAS Score³,10,11,13,14,23,29 ³,10,11,14,23 ³,10,11,14,23 (d,c)
• High NMJ Score³,10,11,14,23,29 ³,10,11,14,23 ³,10,11,14,23 (d,c)
• Comorbidities ³,10,11,14,24 ³,10,11,14,24 (d)
• Age <6 months old or >6 years old ³,10,11,14,24 ³,10,11,14,24 (d)
• Hypothermia at Presentation³,10,11,14,24,25,30 ³,10,11,14,24,25,30 (c)
• TAS Reaction³,10,11,14,24,25,30 ³,10,11,14,24,25,30 (c)

Monitor Parameters and Consider Referral

Pulse Oximetry ³

If SpO₂ < 93% or PaO₂ < 60 mmHg or PCO₂ > 60 mmHg
If SpO₂ > 93-95%
If SpO₂ > 95%

Thoracic Auscultation
Interpret with Other Parameters and Monitor Closely
Thoracic Radiographs
Assess for lower airway, pulmonary and cardiac changes and megaoesophagus ³,12,21,22

Aspiration Pneumonia
Refer to Treatment – Protocol B

Hypoventilation

Is SpO₂ = 93-95%
If SpO₂ < 93%
If PaO₂ < 70 mmHg

Hypoxaemia

If Respiratory Rate × 16 with NMJ Score ≥ 3
Severe hypercapnia

If PCO₂ > 60 mmHg

Respiratory Rate, Effort and Pattern

Blood Gases

Oxygen Supplementation ³,12

If SpO₂ < 90% or PaO₂ < 60 mmHg or PCO₂ > 60 mmHg

Hypoventilation ³,12

Is work of breathing sustainable?

Respiratory Rate, Effort and Pattern

SpO₂ = 93-95%
SpO₂ > 95%

SpO₂ < 90%

If SpO₂ > 90% or PaO₂ > 60 mmHg or PCO₂ < 60 mmHg

Upper airway obstruction suspected

Requires Mechanical Ventilation

Blood Gases

Pulse Oximetry ³

Thoracic Auscultation

If SpO₂ > 90-95%
If SpO₂ > 95%

If Abnormalities Detected

Guarded Prognostic Indicators

If SpO₂ > 93%
If SpO₂ > 95%

If SpO₂ > 90%

If SpO₂ < 90% or PaO₂ < 60 mmHg or PCO₂ > 60 mmHg

If SpO₂ < 90% or PaO₂ < 60 mmHg or PCO₂ > 60 mmHg

Hypoxaemia

Respiratory VAS Score ³,10,11,13,14,23 ³,10,11,14,23 ³,10,11,14,23 (d,c)

If SpO₂ < 90% or PaO₂ < 60 mmHg or PCO₂ > 60 mmHg

* Dyspnoea (inspiratory and/or expiratory) always requires oxygen supplementation
† Does not evaluate hyperventilation, variable accuracy in conscious patients
1 Care with interpretation of capnograph if patient is hypoventilating due to low tidal volume – needs mechanical ventilation³
FELINE PATIENTS: THE DIFFERENCES

The following outlines specific considerations for feline tick paralysis patients and is designed to be read as an adjunct to the *Diagnostic Approach, Protocol A, Protocol B and Management of the Complicated Patient.*

<table>
<thead>
<tr>
<th>Risk Factors associated with a higher mortality rate<sup>23</sup></th>
<th>Factors that reduce the risk of mortality<sup>23</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Advanced respiratory scores</td>
<td>• Coat clipping</td>
</tr>
<tr>
<td>• Advanced gait scores</td>
<td>• TAS administration</td>
</tr>
<tr>
<td>• Hypothermia at presentation</td>
<td>• Mechanical ventilation (in cats with respiratory failure)</td>
</tr>
</tbody>
</table>

Cats who have previously had TAS or canine blood products are at a higher risk of anaphylaxis to repeat TAS administration¹⁵

Initial Clinical Presentation

More likely to be stressed and anxious⁴ compared to dogs

Please note, care should be taken when handling feline patients as upper airway obstruction can be acute and life threatening when exacerbated by stress

Pronounced changes in phonation

Hypoventilation in cats may present with a normal to low respiratory rate

L MN paresis⁴

Tail may be unaffected⁶

Bladder voiding dysfunction⁴

Treatment

It is paramount to minimise stress at all times

Ensure adequate sedation and treat in a quiet, dark, temperature controlled environment⁴

Handle away from dogs to reduce stress⁴

Cats are more likely to have an anaphylactic reaction to TAS than dogs¹⁹

TAS reactions have been reported in 9% of cats treated with TAS²³

Supplement oxygen if indicated using an oxygen cage⁴

Nursing Care

Minimise handling of cats⁴

Consider the use of Feliway[®] (e.g. soak towels, rub on face, diffuser)

Due to laryngeal sensitivity, care should be taken with procedures involving the pharyngeal/laryngeal region (e.g. suctioning)

Anaesthesia and Sedation

Ensure the provision of adequate sedation for feline tick paralysis patients

Cats more commonly require sedation and are less likely to require a general anaesthetic and endotracheal intubation compared to dogs⁹

If anaesthesia is required, monitor the depth closely as total intravenous anaesthesia drugs may be cumulative

Refer to pages 24-25 in the Critical Care section for suggested sedation/anaesthesia protocols.

Relevant Considerations

Cats rarely develop aspiration pneumonia⁴

Hypoventilation is the more common cause of respiratory failure⁴

Megaesophagus is not seen as in dogs^{3,21}

The reported survival rate for mechanical ventilation in cats with tick paralysis is 83.3%²⁵

The reported mortality rate of cats with tick paralysis is lower than in dogs (2%¹⁵ and 6.9%¹⁴ respectively)

In cats multiple ticks and a higher NMJ score are associated with a longer time to recovery¹¹

Prevention

*Application of a registered acaricide for control of *Ixodes holocyclus* in cats*

Follow label instructions

Tick search

*The pattern of distribution includes the head, neck, under the chin, hard palate, between the shoulder blades, caudal to the elbow, chest/belly, flank/back, legs, external anus, inside the anus and the tail^{5,9}***
Assessment and maintenance of airway patency is vital. Consider existing or previous upper airway disease. Consider trans-tracheal oxygen supplementation in cases with upper airway obstruction or in patients that won’t tolerate intra-nasal oxygen. Avoid over-sedating brachycephalic patients as it can further compromise upper airway patency. Consider general anaesthesia and endotracheal intubation +/- mechanical ventilation early in the course of the disease. A temporary tracheostomy may be required in cases with upper airway obstruction, or to facilitate a less complicated recovery post general anaesthetic and endotracheal tube placement. Patients with a temporary tracheostomy need constant monitoring. Monitor body temperature for early detection and correction of hyperthermia or hypothermia. Keep in a temperature controlled environment. Manage owner expectations with regards to increased risk of morbidity.

TIPS FOR TRANSPORTATION OF TICK PARALYSIS CASES TO REFERRAL CENTRES

Refer Early
- See Management of the Complicated Patient
- Things to consider:
 - Ideally critical patients with tick paralysis should be transported anaesthetised, endotracheally intubated and have positive pressure ventilation provided manually (Ambu-bag) or via a transport ventilator with an oxygen supply
 - For cases that aren’t anaesthetised, they should be heavily sedated on oxygen insufflation via nasal line(s) or oxygen cage
- Resuscitation drugs, laryngoscope, endotracheal tubes, Ambu-bag and anaesthetic agents should be readily available
- Advise referral centre of arrival time

If patient is anaesthetised
- Vet and/or vet nurse recommended to travel with patient to maintain airway and monitor general anaesthesia
- Owner assistance not recommended

Legal considerations
- Oxygen tank storage during transportation

MANAGING HYPOVENTILATION WITH LIMITED VETERINARY FACILITIES

- If hypoventilation is the suspected cause of an animal’s deterioration:
 - Remove or reduce the level of sedation as this may be contributing to hypoventilation
 - Maintain the patient in sternal position
 - Perform intermittent manual positive pressure ventilation under general anaesthesia to help reduce respiratory muscle fatigue
 - Oxygen supplementation is recommended 24 hours a day for all respiratory compromised patients

INTENSIVE CARE OF THE ANAESTHETISED AND INTUBATED PATIENT

- Ocular care (refer to Nursing Care – Protocol B)
- Oral care
 - Consider using intravenous giving set tubing as ET tube ties
 - Keep the mouth slightly open with small mouth gags to reduce pressure on the tongue. Care in cats as prolonged forced opening of the jaw may cause central blindness
 - Rinse the mouth 4 hourly. Use dilute chlorhexidine (0.05% solution) first, then continue with sterile saline
 - Gentle brushing of teeth with an extra soft toothbrush may be beneficial
 - Apply glycerine to keep the tongue moist or wrap the tongue in moist swabs
 - Re-position the pulse oximeter probe every 2-4 hours to prevent pressure necrosis
- Change the ET tube as necessary
 - The frequency depends on the quantity of secretions and risk of ET tube obstruction
 - Use a new or sterile ET tube placed aseptically
- Monitor electrolytes, packed cell volume/total protein and blood glucose every 12 hours
- Assess blood gases when necessary (or ideally, every 6 hours)
- Consider performing a complete blood count and biochemistry panel every 24 hours
- Measure fluid inputs and outputs
- Measure bodyweight every 12-24 hours
CRITICAL CARE

FLUID THERAPY

HYDRATION STATUS
This is an estimate of the percentage reduction in extracellular fluid using clinical and laboratory parameters. The clinical signs of dehydration do not result in linear changes in the parameters described due to patient variance (e.g. an obese patient will have less skin tent than a cachectic patient).

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Confounding Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mucous Membranes</td>
<td></td>
</tr>
</tbody>
</table>
| Pale pink | Vasoconstriction caused by pain or anxiety
| Anaemia |
| Pale | Volume loss overestimated because of vasoconstriction caused by pain or anxiety
| Dark pink or red | Vasodilatation and may be interpreted as normal volume
| Haemoconcentration may be interpreted as normal volume |
| Capillary Refill Time |
| <1 sec | May be considered adequate perfusion
| Difficult to interpret if peripherally vasoconstricted because of pain or anxiety |

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Confounding Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin turgor ("tent")</td>
<td></td>
</tr>
<tr>
<td>Young animals with subcutaneous fat</td>
<td></td>
</tr>
<tr>
<td>Obese animals with subcutaneous fat</td>
<td></td>
</tr>
<tr>
<td>Cachectic animals</td>
<td></td>
</tr>
<tr>
<td>Geriatric animals with loss of tissue elasticity</td>
<td></td>
</tr>
<tr>
<td>Mucous Membranes</td>
<td></td>
</tr>
</tbody>
</table>
| Dry | Panting, tachypnoea, dyspnoea
| Moist | Nauseated, vomiting, drinking
| Position of the globe | Cachexia
| Perfusion status | Affected by rate of fluid loss; chronic loss may not affect perfusion parameters until a large volume is lost |

<table>
<thead>
<tr>
<th>Percent Dehydration</th>
<th>Physical Signs</th>
</tr>
</thead>
</table>
| <5 | Not detectable
| 5-6 | Mild loss of skin elasticity |
| 6-8 | Definite loss of skin elasticity
| May have dry mucous membranes |
| May have depressed globes within orbits |
| 8-10 | Persistent skin tent with slow return because of loss of skin elasticity |
| 10-12 | Persistent skin tent with slow return because of loss of skin elasticity
| Depressed globes within orbits |
| Dry mucous membranes |
| Signs of perfusion deficits (CRT >2 sec, tachycardia) |
| 12-15 | Signs of shock
| Death |

Note: The association between percent dehydration and circulatory compromise must also be considered with rate of fluid loss. Chronic fluid loss may result in severe dehydration, but perfusion may be adequate; however, fluid loss occurring acutely will result in circulatory collapse at an estimated lower level of hydration. Therefore perfusion status cannot consistently be used to assess hydration status.

ELECTROLYTE AND ACID-BASE STATUS
Comprehensive patient assessment for fluid therapy also requires evaluation of electrolyte and acid-base status. This evaluation is beyond the scope of the tick guidelines and the interested reader is referred to the chapter ‘Daily Fluid Therapy’ in the textbook by Silverstein and Hopper: Small Animal Critical Care Medicine 2nd ed.

FLUID THERAPY KEY POINTS
- Maintenance fluid therapy is indicated for all patients affected by tick paralysis because nil by mouth is anticipated for at least 24 hours.
- Fluids should be administered cautiously in patients with tick paralysis because of the known incidence of pulmonary oedema in dogs.
- For maintenance fluid requirements:

\[\text{Fluid rate (mL/h)} = \frac{(\text{BW} \times 30) + 70}{24} \]

- Fluid Plan = Maintenance + replacement volume administered over 24 hours if >7.5% dehydrated*
- Fluid Choice
 Replacement crystalloids recommended:
 - Hartmann’s
 - Plasma-Lyte 148
 - 0.9% NaCl

*This plan differs from typical veterinary patients because ongoing losses are not added to the calculation. The replacement volume is administered at the same rate over 24 hours. Only when the dehydration is clearly above 7.5% are replacement components added. Patients without clinical signs of dehydration administer maintenance fluids only.

*Preferred choice for most patients with tick paralysis is compound sodium lactate (Hartmann’s solution). It has a buffer, contains some potassium, and has a more physiological chloride concentration than normal saline.
Potassium supplementation is warranted in most patients due to reduced intake and increased losses through vomiting/regurgitation. Use the following table as a guide.

Table 5: Guidelines for Routine Intravenous Supplementation of Potassium in Dogs and Cats
(Adapted from DiBartola, S.P. (2011))

<table>
<thead>
<tr>
<th>Serum Potassium Concentration (mEq/L)</th>
<th>mEq KCl to Add to 250 mL Fluid</th>
<th>mEq KCl to Add to 1 L Fluid</th>
<th>Maximal Fluid Infusion Rate* (mL/kg/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td><2.0</td>
<td>20</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td>2.1-2.5</td>
<td>15</td>
<td>60</td>
<td>8</td>
</tr>
<tr>
<td>2.6-3.0</td>
<td>10</td>
<td>40</td>
<td>12</td>
</tr>
<tr>
<td>3.1-3.5</td>
<td>7</td>
<td>28</td>
<td>18</td>
</tr>
<tr>
<td>3.6-5.0</td>
<td>5</td>
<td>20</td>
<td>25</td>
</tr>
</tbody>
</table>

*So as not to exceed 0.5 mEq/kg/h

Monitoring Fluid Therapy Requirements
- Fluid requirement needs to be calculated for individual patients, and will be affected by age and concurrent disease. The most important component of fluid therapy is to monitor the response of the patient to the fluid being administered and to readjust the strategy as necessary.
- Repeat physical examination every 12 hours
 - Measure bodyweight every 12 hours
 - Repeat PCV/TP and electrolytes as required
- Reduce fluid rate if there are signs of the following:
 - Weight increase > than % dehydration. For example, if a patient is 10% dehydrated and their weight increases by more than 10% then this could indicate overhydration/positive fluid balance
 - Overhydration - oedema or ‘jelly like’ presence subcutaneously
 - Tachypnoea and signs of pulmonary oedema

Oxygen Supplementation

Table 6: Indications, Advantages, and Disadvantages of different methods for Oxygen Supplementation

<table>
<thead>
<tr>
<th>Technique</th>
<th>Indication</th>
<th>FiO₂</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow-by</td>
<td>Short term therapy only</td>
<td>40%</td>
<td>Quick, non-invasive</td>
<td>Low FiO₂ achieved</td>
<td>Hold high flow oxygen line 5 cm from nares and concentrate with a loosely fitting face mask if patient will tolerate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Patient may not tolerate procedure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>High flow oxygen required</td>
<td></td>
</tr>
<tr>
<td>Nasal oxygen</td>
<td>Short and long term therapy</td>
<td>50-70% increases with flow rate</td>
<td>Good all round technique in dogs. Patients will tolerate for extended periods, high FiO₂ achieved</td>
<td>Less effective in brachycephalic dogs and all cats. Some patients will not tolerate</td>
<td>Place 5-10 Fr soft rubber tube into nasopharynx via the nasal cavity by directing the tube medially and ventrally. Spray a small amount of local anaesthetic in nare first to desensitise. Flow rate starts at 100 mL/kg/min and titrated to effect and patient comfort</td>
</tr>
<tr>
<td>Oxygen chamber</td>
<td>Long term therapy</td>
<td>40-90%</td>
<td>Very effective and non-invasive. Technique of choice in cats</td>
<td>Larger patients can overheat in cage Oxygen concentration returns to 21% when door opened Difficult to monitor patient other than visual observations</td>
<td>Can buy commercial cage. Concentrate oxygen using high flow into a relatively sealed cage or container and measure internal FiO₂</td>
</tr>
<tr>
<td>Trans-tracheal Intra-tracheal</td>
<td>Long-term therapy</td>
<td>50-100%</td>
<td>High FiO₂ achieved with minimal flow rate Can be tolerated for extended period</td>
<td>Trans-tracheal O₂ requires catheterisation of the trachea Intra-tracheal Oxygen can only be delivered when an ET tube is placed (patient anaesthetised)</td>
<td>Trans-tracheal: Place large bore (14g) IV catheter into the trachea then feed a 3 Fr rubber feeding tube through the catheter and into the trachea. Remove catheter, place tape wing and suture to skin to secure Intra-tracheal: Place soft rubber tube down the ET tube to the level of the distal trachea and administer oxygen at 50 mL/kg/min titrated to effect</td>
</tr>
</tbody>
</table>
SEDATION

Choices of which sedative to use include: (drugs in bold are considered first-line)

- **Acepromazine 0.01–0.05 mg/kg IV or SC** [maximum of 2 mg total dose, take into account patient’s age and health status, administer slowly IV if possible]
- **Butorphanol 0.1–0.5 mg/kg IV or SC, CRI of 0.05–0.3 mg/kg/h**
- **Methadone 0.1–0.3 mg/kg IV, IM or SC**
- **Buprenorphine 10–30 µg/kg IV or SC, mainly for cats, use with ACP or diazepam, takes about 30 minutes to take effect**
- **Diazepam 0.1–0.2 mg/kg IV or IM, use with an opioid**
- **Methadone 0.1–0.3 mg/kg/hr, use with a butorphanol CRI, can result in profound sedation/stage 1 anaesthesia. Make up to 1 mg/mL (50 mg vial up to 50 mL, 15 mg vial up to 15 mL)**
- **Midazolam 0.1–0.3 mg/kg/hr, use with a butorphanol CRI, can result in profound sedation/stage 1 anaesthesia. Make up to 1 mg/mL (50 mg vial up to 50 mL, 15 mg vial up to 15 mL)**

Table 7: Butorphanol Bolus and CRI Doses

<table>
<thead>
<tr>
<th>Patient Weight (kg)</th>
<th>Bolus Dose IV (mL) 10 mg/mL solution</th>
<th>CRI Dose IV (mL/h) 0.2 mg/mL solution</th>
<th>CRI Dose IV (mL/h) 0.1 mg/mL solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>0.025</td>
<td>0.625–3.75</td>
<td>1.25–7.5</td>
</tr>
<tr>
<td>5</td>
<td>0.05</td>
<td>1.25–7.5</td>
<td>2.5–15</td>
</tr>
<tr>
<td>10</td>
<td>0.1</td>
<td>2.5–15</td>
<td>5–30</td>
</tr>
<tr>
<td>20</td>
<td>0.2</td>
<td>5–30</td>
<td>10–60</td>
</tr>
<tr>
<td>40</td>
<td>0.4</td>
<td>10–60</td>
<td>20–120</td>
</tr>
<tr>
<td>60</td>
<td>0.6</td>
<td>15–90</td>
<td>30–180</td>
</tr>
</tbody>
</table>

Choose a concentration of butorphanol CRI suitable for available fluid pumps and take into consideration total fluid rate for patient.

2.5 mL/kg/h is a reasonable maintenance rate for balanced crystalloid fluids in patients affected by tick paralysis. The specific maintenance calculation is:

\[\text{Fluid rate (mL/h)} = \left(\frac{\text{BW} \times 30}{24} \right) \]

The temperament, age, and clinical status of the patient should also be considered when choosing a dose rate.

ANAESTHESIA

Anaesthetic options for patients requiring mechanical ventilation include:

- **Propofol 0.05 – 0.6 mg/kg/min with midazolam +/- butorphanol**. Start at about 0.1 mg/kg. Often when used in combination with an opioid and benzodiazepine only small amounts are needed making it moderately cost effective. A practical starting rate is 0.5 mL/kg/h of propofol 1% which can be titrated up or down. Watch for the cumulative effect +/- Heinz bodies in cats, and high doses will cause significant lipoaemia. For this reason, alfaxalone is the preferred drug in cats.
- **Alfaxalone 2-4 mg/kg/h** [lower dose than stated on current label]
- **Fentanyl 4–20 µg/kg/h** when used in combination with midazolam. Cardiovascularly stable and can be titrated, but is expensive.
TAS DOSES USED BY PANEL MEMBERS

There is currently insufficient evidence to support a consensus panel recommendation for dosing TAS. In the absence of a panel recommendation, the doses on this page represent the current opinion of a number of individual panel members.

ROB WEBSTER

I approach it on a case-by-case basis. My general rule of thumb is to treat to excess: Most dogs receive 20 mL per dog, or 1 mL/kg whichever is larger. Small dogs <7.5 kg get 10 mL. All cats receive 10 mL. If the patient is in congestive heart failure and the TAS volume is potentially harmful I reduce the dose further.

HEATHER RUSSELL

Cats: 10 mL diluted to 30 mL with saline (10 mL TAS + 20 mL saline) administered over 3 hours at 10 mL/hr. We start slowly and increase gradually for the first 30 minutes if no reactions.

Dogs: minimum of 10 mL, maximum of 25 mL. (1 mL/kg in the middle) Consider increasing total volume if two or more ticks. We dilute 50:50 with saline and give over 30-60 minutes.

JUSTIN DANIEL

Cats: 12 mL for all cats

Dogs:

<table>
<thead>
<tr>
<th>Weight Range</th>
<th>TAS Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5 kg</td>
<td>12 mL</td>
</tr>
<tr>
<td>5-10 kg</td>
<td>20 mL</td>
</tr>
<tr>
<td>11-15 kg</td>
<td>2 mL per kg</td>
</tr>
<tr>
<td>16-25 kg</td>
<td>1.5 mL per kg</td>
</tr>
<tr>
<td>>25 kg</td>
<td>1 mL per kg</td>
</tr>
</tbody>
</table>

If there is >1 tick, then I’ll quite often give 1.5 x the doses listed above.
References

Disclaimer: This document aims to provide guidance to veterinarians managing tick paralysis cases of dogs and cats, and should not replace the attending veterinarian’s clinical judgement of individual cases. Drugs and dosages represent the opinions of the panel members and are correct at the time of publication.